
INTRODUCTION

A modeling framework for safe code on (Multi-Core) Controllers 



µRTE

µRTE Introduction
www.u-rte.com

M.Sc. Thomas Barth Prof. Dr. -Ing. Peter Fromm



µRTE

µRTE Introduction
www.u-rte.com

µRTE

Powerful hardware enables complex software
Smart Sensor and Actor modules
Complex Libraries
Linker configuration (many memory modules)
RTOS configuration
Change / Fear of refactoring
Lifecycle

Complex Peripherals
Multi-Core

Growing CPU and Memory performance

Seamless Documentation
Traceability
Requirement management

Safety functions are mostly implemented in software
General trend towards high diagnostic coverage

Freedom from interference (memory, CPU, peripherals)

Time to market
Development costs

Availability of skilled contributors

Significant increase in safety related 
embedded control systems
Connectivity/IoT



µRTE

µRTE Introduction
www.u-rte.com

Concept phase

Feasibility study

Product development

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Prof. Fromm starts the 
implementation of a 
lightweight runtime 
environment to be used in 
the academic environment

Prof. Fromm consults the company 
Linde who considers to introduce 
AUTOSAR™ on an AURIX™multi-core 
microcontroller for forklift control. After 
an evaluation phase, an improved 
version of the lightweight runtime 
environment is introduced instead.

Thomas Barth joins the research group 
for his master thesis and starts a PhD 
program afterwards.

Along with the FZI at the Karlsruhe 
Institute of Technology and the 
company HighTec, the research group at 
Hochschule Darmstadt attracts funding 
for 2 years to research the applicability 
of multi-core microcontrollers for safety 
critical applications.

A feasibility study is conducted in which 
an possible framework for product 
development is identified. The 
development of µRTE starts during this 
phase.

An prototype of µRTE is evaluated in an 
industrial project in which the software 
for an safety relevant HMI for an 
agricultural machine is implemented.

In this project, µRTE is used for software 
architecture definition, code generation, 
requirement management and 
documentation generation.

A first version of µRTE including all 
core-features is released:
- Software Modeling
- Hardware Modeling
- Functional Modeling
- Requirements Modeling
- Automated model assessment
- Code generation
- Report generation

Industrial Evaluation



µRTE

µRTE Introduction
www.u-rte.com

µRTE

Requirements Functionality

Software Hardware

µ

Code Frame
Activation Framework
Data encapsulation

Report

Memory allocation
Memory protection

Test Frame (WIP)

Generator



µRTE

µRTE Introduction
www.u-rte.com

µRTE

Hardware

Drivers RTOS

µRTE

Application

Software features
• Cyclic and Signal driven activation of runnables 
• Multiple system-states with own data-flows
• Extensive system and application error handling
• Human readable code

Portability
• Any RTOS 
• Any Controller Single/Multi-Core
• Any Toolchain (C/C++ on GCC implemented)

Process
• Encourages clean and modular solutions
• Eclipse plugin implementation
• Intuitive and rich graphical modeling 
• Complete support of V-model
• Extensive auto-generated documentation

Safety
• Complete modeling of the safety case
• Inbuilt consistency and safety checks
• Complete traceability from requirements to 

implementation units
• Supports freedom from interference
• Generated code complies with MISRA standard



µRTE

µRTE Introduction
www.u-rte.com

µRTE



µRTE

µRTE Introduction
www.u-rte.com

µRTE



µRTE

µRTE Introduction
www.u-rte.com

µRTE



µRTE

µRTE Introduction
www.u-rte.com

µRTE



µRTE

µRTE Introduction
www.u-rte.com

µRTE



µRTE

µRTE Introduction
www.u-rte.com

µRTE



µRTE

µRTE Introduction
www.u-rte.com

µRTE



µRTE

µRTE Introduction
www.u-rte.com

µRTE



µRTE

µRTE Introduction
www.u-rte.com

µRTE

Development
Implementation of functionalities within the generated 

code-frame based on the report

Requirements
The behavior of the system including safety 
requirements is defined

Architecture
Definition of hardware, data-flows and 
overall software-structure

Generation
Report and Code-Frame
Existing user-code is preserved

Unit, integration and system tests based on the 
report supported by the uniform structure of the 

generated code

µRTE needs to be integrated onto a 
specific target and RTOS once



µRTE

µRTE Introduction
www.u-rte.com

µRTE

• Fast familiarization
• Code focus moves to architectural focus
• Significantly improved system understanding
• Architectural refactoring support
• Cross platform reusability
• Good code analyzability / debugability



µRTE

µRTE Introduction
www.u-rte.com

µRTE

• Test-Framework generation (WIP)
• OS-less implementation
• Extension towards interrupts, centralized error handling and more
• Certifiable implementation
• Readback of generated artifacts and comparison against model
• Linkage to other tools, CI/CD etc.



µRTE

µRTE Introduction
www.u-rte.com

µRTE

• One additional system task with central tick
• Tasks are not generated
• Global timestamp source
• Interfaces for inter-task messaging and notification


